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Abstract This article presents some results on the statistical behavior of localized structures—called
“spots”—that propagate in the flow between a rotating and a stationary disk when those are very close
one to the other. Under these conditions the rotating-disk flow belongs to the Couette-flow family and is
called the torsional Couette flow. Some visualizations of its transition to turbulence have already revealed
the propagation of these spots (Schouveiler et al., J Fluid Mech 443:329–350, 2001) from the rim of the disk
towards its center. Using flow visualizations and an original image analysis, the present study aims to better
describe the characteristics of the spots whose number continuously increases with the Reynolds number
until they invade the whole flow. Moreover, we propose a statistical model that predicts an error-function
shape for the probability to observe a spot at a given radial position. This prediction is confirmed by an im-
age analysis of the flow and the stability curve of torsional Couette flow is deduced from these observations.

Keywords Transition to turbulence · Rotating flows · Rotating disk

1 Subcritical transition of the Couette-flow family

One of the most amazing features of fluid mechanics is certainly the transition to turbulence of plane
Couette flow (PCF). This two-dimensional laminar shear flow is created in the gap between two parallel
plates when one of the plates is translated at a constant velocity. The velocity profile in the direction
perpendicular to the plates is a linear function of the distance to the fixed plate as shown in Fig. 1a. Despite
the extreme simplicity of this flow, its transition to turbulence is still an open question of fluid mechanics,
although recent important progress has been realized. In particular, Prigent et al. [1] have shown that
turbulence appears as periodic inclined bands in the laminar flow before it invades the whole flow. These
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bands, whose origins and characteristics are not yet understood, have, however, been reproduced in numer-
ical simulations by Barkley and Tuckerman [2]. In fact, it was shown in [1] that this banded turbulence
has the same threshold, wavenumber and inclination angle with respect to the streamwise direction, as the
spiral turbulence discovered 40 years ago by Coles [3] and van Atta [4] in the Taylor–Couette flow (TCF).
Indeed, the Taylor–Couette flow between two rotating co-axial cylinders is, in the small-gap approximation,
similar to the plane Couette flow as can be seen in Fig. 1b. Consequently, the turbulent bands of the PCF
are the exact equivalents of the turbulent spirals of the TCF. More recently, a third type of flow was added
to this Couette family and its banded turbulence: it was shown [5] that the gap flow between a rotating and
a stationary disk is subject to spatio-temporal intermittency that is created by the presence of turbulent
spirals (true spirals this time and not helices as it is often said for the TCF). As for the TCF flow inside
coaxial cylinders, the small-gap approximation for this flow is again the Couette flow (see Fig. 1c).The
main ingredient to get this original transition to turbulence comes from the property of the three flows
to be bistable: the laminar flows are linearly stable (at least in a certain range of Reynolds numbers) but
they are unstable against finite-size perturbations at relatively small Reynolds numbers. The flows can then
bifurcate towards states characterized by strongly nonlinear localized turbulent patches inside laminar
domains. At higher Reynolds numbers, these patches develop into the turbulent bands. Moreover, it was
shown by Dauchot and Daviaud [6] that there is a minimum critical amplitude for perturbations to be
sustained in the plane Couette flow. This minimum amplitude Ac is a function of the Reynolds number Re:
at high Reynolds numbers, the laminar flow is more susceptible to destabilization than at small Reynolds
numbers. Therefore, Ac = f (Re) is a monotonically decreasing curve as drawn in Fig. 2. This curve is
called the stability curve and Dauchot and Daviaud [6] have also shown that there is a maximum Rey-
nolds number below which perturbations (that we suppose to be generic) cannot grow. Therefore, they
confirm the general power-law behavior of the stability curve: Ac = (Re–Rec)

α . In particular, this defines
a global-stability critical Reynolds number Rec which is equal to 1300 ± 20 in PCF (with our definition of
the Reynolds number; see later). The determination of the exponent α was the subject of several studies
and it seems that there is today a general agreement for a value of α between −1 and −7/4 as predicted
by different studies [7, 8]. A semi-realistic model of PCF shows also that this exponent is equal to −1 [9].
Note that an exponent of −1 was obtained by Waleffe from a simple balance between nonlinear advection
terms and viscous terms [10]. More recently, it was shown that this exponent α is between −1 [11] and −1.4
[12] in pipe-flow transition to turbulence which is also known to be subcritical.

As regards the torsional Couette flow, Cros and Le Gal [5] showed that the transition to turbulence via
the turbulent spirals was in fact blocked to a maximum turbulent fraction equal to 1/2. A relaminarization
of the flow was even observed at higher rotation speeds. The final transition process occurs by the nucle-
ation of a growing number of tiny localized structures which were referred to as “spots” by Schouveiler
et al. [13]. Their appearance threshold is a function of the distance h between the disks and of the rotation
rate � of the rotating disk. Figure 3a represents a snap-shot of this flow where spots can be observed as
small black areas. They have a “V” shape with the legs turned towards the disk rotation direction and thus
look like the horse-shoe vortices classically observed in boundary layers (see Fig. 3c). In our case, the legs
would be pinned to the rotating disk and the head of the structure would be transported by the mean flow
at proximity of the fixed disk. We suspect that they are generated close to the rim of the disk at a radius
R by natural fluctuations of random amplitude. Then, they propagate through the laminar flow along a
spiral towards the center of the flow (see Fig. 3b). The spiral rolls up towards the center of the flow in
the same direction as the disk rotation. Their size is approximately given by h and we have observed that
they never propagate farther than a critical radius for a given Reynolds number. The determination of this
critical radius will be the subject of Sect. 4. The total number of spots increases and they propagate further
towards the center as the rotation speed � is increased. The ultimate turbulent state is then formed when
a large number of spots amalgamate. As already described, the torsional Couette flow is formed when
the rotating boundary layer (the von Kármán layer) and the stationary disk layer (the Bödewadt layer)
merge. Note that this is only possible (at the considered Reynolds numbers) when the stationary and the
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Fig. 1 The three members of the Couette flow family. (a) the plane Couette flow between two planes, (b) the Taylor–Couette
flow between two cylinders, (c) the torsional Couette flow between two disks

Fig. 2 The stability curve for finite-amplitude perturbations to be sustained in the flows of the Couette family. Perturbations
are damped if their amplitudes are lower than the critical amplitude Ac that corresponds to a critical Reynolds number RAc .
A generic shape for this curve is given by a power law Ac = (Re–Rec)

α

rotating disk are sufficiently close to one another, otherwise another transition that involves circular and
spiral waves takes place [14]. Because of rotation, the velocity field is three-dimensional and a centrifugal
flow takes place in the von Kármán layer. Due to mass conservation, a centripetal flow is then also present
in the Bödewadt layer and creates what is often referred to as Ekman pumping. Therefore, we suspect
that the spots which are generated at the disk periphery, on natural uncontrolled fluctuations of amplitude
A, are transported towards the center by this re-circulating flow. Then, as the local Reynolds number is
directly proportional to the radial position on the disk (Re = 2π�rh/ν, ν being the fluid viscosity), the
spots experience a decreasing Reynolds number until they meet a threshold RAc and die at radius rAc.

The aim of this study is to provide a statistical description of this transition to turbulence and to obtain
the stability curve Ac = f (Re) for torsional Couette flow. To this end, recordings of flow visualization
experiments will be analyzed by means of image-processing techniques.
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Fig. 3 (a) Visualization of spots in the torsional Couette flow. (b) Schematic representation of the spot spiraling path from
the disk rim to the disappearance radius rA. (c) close-up of the spots where the “V” shape with the two legs reminiscent of a
horse shoe vortical structure is visible; two different regions of the flow are presented

2 The apparatus and the visualization technique

Figure 4 is a schematic representation of the main part of the device used in this study. The enclosure, which
contains the fluid used in this experiment (water at room temperature around 20◦C) is cylindrical, with a
radius of 152 mm and a depth of 60 mm. The stainless steel rotating disk is immersed in this container and
possesses a radius R = 150 mm and a thickness of 13 mm. This disk is set into rotation by a D.C. electric
motor. The rotational speed � is controlled and regulated within 0.2% via a feedback control loop; � can
vary between 0 rpm and 200 rpm. The second adjustable control parameter is the distance h between the
two disks that can be continuously adjusted between 0 mm and 21 mm with an accuracy of 0.02 mm. The
stationary disk is the removable lid of the tank. It is made in a transparent 20 mm thick plexiglass plate that
permits to visualize the flow. There is a radial gap dr between the cylindrical wall of the container and the
disk; dr is adjustable between 0.1 mm and 2 mm by means of thin plastic rings which are adjusted around
the rotating disk in order to change its diameter and consequently the radial gap. This enables the lateral
boundary conditions of the rotating flow to be modified. The tank is completely filled with water and a
hole in the center of the lid facilitates removing air bubbles trapped underneath the lid. After all air has
been removed from water, the hole is sealed before the experiment begins. Water temperature is measured
during the experiment and viscosity corrections are taken into account to calculate the Reynolds numbers,
but only weak temperature deviations, less than 2◦, have been observed.

In order to visualize the flow, water is seeded by anisotropic and reflective Kalliroscope particles.1 These
constitute a poly-dispersive solution of flat flakes having a typical size of 30 × 6 × 0.07 μm. Kalliroscope
fluid is added to water in a proportion of 1–3% in weight. Their orientation depends on the local shear

1 www.kalliroscope.com
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Fig. 4 The rotating disk device. The disk has a radius R of 150 mm, the gap distance h between the disk and the stationary lid
can vary between 1 and several mm. The radial gap dr between the disk and the stationary cylindrical shroud can be varied
between 0.1 mm and 2 mm by means of thin additional rings

[15, 16] and this characteristic facilitates this well-known visualization technique. As the disk is painted
in black, the fluctuations in orientation of the particles inside spots result in the visualization of these as
dark areas. The flow is illuminated by the means of 10 bulbs positioned on a 50 cm diameter circle, equally
spaced and located approximately 1 m above the disk. The flow is filmed by a video camera placed 1 m
above the disks and aligned with the axis of rotation. This camera is connected to a PC and a frame grabber
permits video movies and images of the flow to be recorded. These movies are analyzed by means of a
purpose-built image-analysis software.

3 Visualization and analysis of spots nucleation

Figure 5 presents a typical series of images illustrating the transition to turbulence of the torsional Couette
flow. As previously observed, the spots appear on images as black V shaped areas. Depending on the
illumination, or of the quantity of Kalliroscope particles or the dark shadow of the central cap, a grey
central zone may be visible in some of the runs. This grey central zone (where the flow is strictly laminar
and free of spots) will be removed from the image in order to perform the statistical study of Sect. 3. As
can be observed, the number of spots increases as � is increased and they propagate further towards the
center of the flow. For each h, the first spot appears at a critical �. Therefore, the flow parameters where
spots are observed can be determined by visual inspection analogous to the procedures in [5]. As the
spots are created in the region of the flow next to the radial gap, we performed an exhaustive study of the
influence of the radial gap size on the spot creation. As expected, dr affects the appearance of spots and
Fig. 6a shows the influence of this gap width on the critical Reynolds number (2π�Rh/ν, where R is the
radius of the rotating disk) where the spots appear. These measurements have been performed for each
gap distance h. We performed four experiments (dr = 0.65, 1.25, 1.5 and 2 mm) and the results obtained
by Schouveiler et al. [13] for dr = 0.1 mm are also included in the figure. Figure 6 clearly shows that the
gap size is a key parameter in the formation of spots and that the threshold is pushed to higher Reynolds
numbers as the gap decreases, as can be seen in Fig. 6b. This result shows that the flow in the proximity of
the radial gap, generates fluctuations that have the susceptibility to grow if the Reynolds number is large
enough. Then, these perturbations rapidly evolve towards the horse-shoe structure of spots and they are
transported with the centripetal flow. Figure 6a also confirms that the threshold for spots appearance does
not vary with h (at least in the range explored) proving that finite size effects do not interfere significantly
with the transition process, except, of course, for generating the initial perturbations in the radial gap.

Together with this threshold determination, we have also counted the number of spots as a function of
the Reynolds number based on the disk radius. The spots were counted by visual inspection of series of
successive images. Strong fluctuations of the number of spots are apparent from the data of Fig. 7. These
data represent a temporal series (for � = 55 rpm) where several bursts of a large number of spots appear



294 J Eng Math (2007) 57:289–302

Fig. 5 Visualization of the transition to turbulence of the torsional Couette flow (h = 2.8 mm). When the rotating frequency
is increased, the number of spots increases and their observation minimum radius decreases. Disk rotation is clockwise

2 2.2 2.4 2.6 2.8 3
1000

1500

2000

2500

3000

h (mm)

cr
iti

ca
l R

ey
no

ld
s 

nu
m

be
r

0 0.5 1 1.5 2 2.5
1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

dr (mm)

cr
iti

ca
l R

ey
no

ld
s 

nu
m

be
ra) b)

Fig. 6 (a) Critical Reynolds number threshold for spot appearance as a function of the distance h between the disks and
parameterized by the radial gap dr between the disk and the cylindrical shroud. � dr = 2 mm; x dr = 1.5 mm; + dr = 1.25 mm;
◦ dr = 0.65 mm; � dr = 0.1 mm from [13]; (b) Variation of the critical Reynolds number (averaged on h) with the radial gap
size dr

from time to time. The histogram of this series is also presented in Fig. 7. As can be seen, it displays a long
tail of rare events—a feature reminiscent of a Poisson distribution.

The evolution of the time averaged number 〈n〉 of spots versus � is presented in Fig. 8 for h = 3 mm and
in the top Figure and for h = 3.1 mm for the middle plot. The global threshold for the first emergence of
spots is easily determined, although the number of spots fluctuates substantially. The error bars represent,
in fact, the standard deviation

√〈n2〉 of the temporal series. It is observed that the data displays two distinct
regions in which 〈n〉 increases approximately linearly but at different rates. This fact was systematically
confirmed on every run. As a means to test the assumption that the histogram in Fig. 7 displays a Poisson
distribution for the occurrence of spots, we have plotted the evolution of this variance 〈n2〉 as a function of
the mean number of spots 〈n〉 in Fig. 8 (bottom). It can be seen that, except for a single run, the data align
perfectly on a straight line as it is characteristic for a Poisson distribution. This corroborates the statistical
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independence of the spots which consist of, as expected, fast (the life-time of a spot is about one-tenth
of a rotating period) isolated random events. Note that the run at 〈n〉 = 11 which lies quite substantially
above the line extrapolating the other data points in Fig. 8 (bottom) is also the run where 〈n〉 changes
its evolution. We have no explanation for this slope change which has been systematically observed in
experimental runs for different values of h.

4 Statistical analysis by image processing

In order to perform a more accurate statistical description of the behavior of the spots, an image analysis
has been performed to determine the distribution of spots as a function of r. Figure 9a shows an example of
an image of the flow displaying a large number of spots. These spots are represented by a group of darker
pixels. Such a light intensity variation can be quantified by the determination at each pixel of its brightness I.
In the RGB system, a video image taken by a CCD camera can be expressed at each pixel by its three color
components: Red R, Green G and Blue B. Using a classical definition of the intensity I of the brightness of
a pixel, one can calculate I from these three components to be equal to I = 0.299R+0.587G+0.114B (this
definition comes in fact from the best human color perception [17]). In order to extract individual spots,
a binarization technique, which classifies pixels into two sets, darker or brighter pixels, was performed.
Figure 9b is the binary image of Fig. 9a using a threshold, which is determined by Otsu’s method [17]. This
threshold value is chosen when the covariance between two separated sets of different brightness intensity
probability distribution becomes a maximum. The covariance σ 2

B for a given threshold k between set 1 and
set 2 is determined as

σ 2
B(k) = (μ1 − μT)2ω1 + (μ2 − μT)2ω2

= ω1ω2(μ1 − μ2)
2, (1)

where μ1 and μ2 are the averaged brightness values of set 1 and set 2, respectively, and where μT is the
average brightness value for the whole binary image. Similarly, ω1 and ω2 are the probability of each set
defined as:

ω1 =
k∑

i=0

pi, ω2 =
255∑

i=k+1

pi = 1 − ω1 with
255∑

i=0

pi = 1,

where pi is the probability distribution of the brightness intensity.
The probability for a spot to exist at radial position r is determined by P(r) = Nb/N where N is the

number of pixels calculated on a circle of radius r and Nb the total number of black pixels on the circle.
P(r) also represents the product of the average size of a spot and the number of spots on a circle. Such an
analysis has been performed by averaging P(r) over a large number of images (typically 50), for different
speeds of rotation � and different axial gap distances h and for a fixed radial gap dr = 2 mm. Figure 10
shows these probability distributions as functions of the flow parameters. As expected, P(r) increases with
respect to the radial position r and also with the rotation speed �. Near the rim of the disk, we can observe
that spots are in their formation process (P(r) increases or decreases sharply) before a plateau is formed
around r/R = 0.9. Note that, as already mentioned, the central part of the flow can be polluted by the
dark shadow of the cap in the middle of the lid. Consequently, only values of r/R larger than 0.4 will be
considered in the following. Moreover, the two runs where high levels of grey are visible (h = 2.4 mm,
� = 90 rpm and � = 100 rpm) will not be used in the following statistical analysis.

The main goal of the following analysis is to determine the stability curve of torsional Couette flow from
these P(r) curves. These curves can be interpreted as the response of the flow against external random
perturbations. We will develop a model for spot propagation in order to determine in particular if the
spots disappear at a typical critical radius that depends on their amplitude. To this end, we first assume
that the stability curve of torsional Couette flow is similar to that of two-dimensional Couette flow as
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Fig. 7 top: Temporal series (time unit is the disk rotation period) of the number of spots for � = 55 rpm and h = 3.1 mm.
Strong intermittency is observable with some bursting of groups of spots. bottom: Histogram of the temporal series that shows
a Poisson-like distribution of the spot occurrence
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Fig. 9 An example of a raw image (a) and its corresponding binary image (b) from Kalliroscope flow visualization

Fig. 10 Probability P(r) to get a black pixel for different value of � and h. The radial gap dr is fixed to 2 mm (top-left,
h = 2.4 mm; top-right, h = 2.6 mm; bottom-left, h = 2.8 mm; bottom-right, h = 3 mm)

shown in Fig. 2, the local Reynolds number being directly converted into the radial position r. As we saw
before, spots are generated by the growth of perturbations close to the radial gap between the rotating
disk and the cylindrical wall. When created, a spot travels on a spiralling path towards the center of the
flow. Its amplitude A is an unknown function of r as illustrated in Fig. 11. It is therefore probable that
the distribution Prob(A) of the amplitudes of the perturbations or of the spots (when created) also varies
with r.

We define PA(r, t) as the probability of observing a spot of a given amplitude A, at radius r and at time
t. If one averages this quantity over time, the probability of observing spots of amplitude A on a circle
of radius r is PA(r) = 〈PA(r, t)〉t. If the spots had a unique amplitude A, because of the determinism of
the Navier–Stokes equations, it is straightforward to deduce that PA(r) would be a step function located
in r = rAc. As illustrated in Fig. 12, the totality of identical spots created on identical fluctuations would
disappear at the same critical radius rAc. We assume here that the relaxation time of damped spots for
r < rAc, is shorter than their lifetime so that we neglect the duration the spots will take to completely
disappear after they cross the stability radius. In fact, the estimation of the damping rate of a spot after



298 J Eng Math (2007) 57:289–302

Fig. 11 Schematic diagram of amplitude A variation with respect to r

Fig. 12 Probability of observing spots that appeared on a fluctuation of single amplitude A. The totality of these identical
spots disappears at the same location rAc

Fig. 13 Schematic diagram of variation of Prob(A), where intersection with Ac(r) represents Prob(Ac(r)). P(r) is the
integration of Prob(A) from this limit Ac(r) to infinity

it has crossed the critical radius is not obvious. However, this assumption is supported by the visual study
of spots that shows that they keep a constant V shape (and apparently constant amplitude) all along their
trajectory until they abruptly disappear.

In fact, each spot is associated with a particular value A for the amplitude of the perturbations. Thus,
there is a probability distribution Prob(A) for the statistic variable A. Figure 13 illustrates furthermore
the propagation of the spots with the evolution of their amplitude probability Prob(A). Assuming that
torsional Couette flow has a critical amplitude curve as given in Fig. 2, one can calculate the probability
P(r) for a spot to go through the circle of radius r by integrating PA(r) over all the possible amplitude A:

P(r) =
∫ ∞

0
PA(r)Prob(A)dA =

∫ ∞

Ac(r)
Prob(A)dA. (2)
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Fig. 14 Two examples from the experiments for h = 2.0 mm and � = 150 rpm (+) and for h = 2.6 mm and � = 110 rpm (o)
for the probability P(r) (normalized to 2) (a) and its associated function X(r) (b). We recognize the error function shape for
P(r) although an exact fit would imply X(r) to be strictly linear which is obviously not the case

To go further in the mathematical analysis, i.e., to compute the integral (2), it is necessary to assume
that Prob(A) has a known mathematical expression. Unfortunately, our experiment does not permit to
evaluate Prob(A). However, as a first guess, and in order to illustrate furthermore our statistical theory for
spots generation and disappearance, let us suppose that A has a Gaussian distribution as the generating
fluctuations at the disk rim are due to external noise:

Prob(A) = 1√
2πσA

exp

[

− (A − Am)2

2σ 2
A

]

, (3)

where Am and σA are, respectively, the mean value and the standard deviation of the probability of
perturbation amplitudes A. As already indicated, both can be functions of r. We then calculate explicitly
P(r) as an error function:

P(r) = 1√
2πσA

∫ ∞

Ac(r)
exp

[

− (A − Am)2

2σ 2
A

]

dA

= 1 + 1√
2πσA

∫ Am(r)

Ac(r)
exp

[

− (A − Am)2

2σ 2
A

]

dA

= 1 − erf(X), (4)

where

X = (Ac(r) − Am(r))√
2 σAc(r)

. (5)

Figure 14 shows two examples where it can be verified that the functions P(r) are very close to error
functions as predicted by the previous Gaussian model. The functions X(r) can be estimated by a direct
inversion of the experimental curves P(r) of Fig. 14a. They are represented in Fig. 14b. Note that X(r)
would be a strictly linear function of r if P(r) was exactly an error function of r, i.e., if Prob(A) was an exact
Gaussian distribution. From the definition of X(r), we can determine directly the mathematical expression
of the stability curve Ac(r). This function is, in fact, the only quantity that characterizes the torsional
Couette flow:

Ac(r) = Am(r) + √
2 σAc(r)X(r). (6)

As one can see from Eq. 6, the behavior of the stability curve Ac(r) is a balance between functions X(r)
and Prob(A). But Eq. 6 is only valid if Prob(A) is a Gaussian function. And we just saw that this is not
exactly the case. Thus, as a second guess, let us now suppose that Prob(A) is similar to the Poisson dis-
tribution that was measured for the temporal fluctuations of the total number of spots (see Fig. 7). This
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is very plausible as intense fluctuations are supposed to generate groups of many spots. Therefore, let us
take the number of generated spots as the amplitude unit of perturbations. Let us now remark that P(r),
being by definition the probability of observing a spot at a position r, can also be seen as the integrated
probability of spot disappearance at radius r. P(r) is indeed the sum of the total number of spots crossing
the circle of radius r and disappearing at a smaller radius. Figure 15 shows the examples of the probability
for spot disappearance dP(r)/dr, calculated from the experimental measurements of Fig. 14. As expected,
the characteristic hump of a probability curve is found with a well-defined maximum that corresponds,
in fact, to the zero crossing of the X(r) function. Equation 5 shows that this location ro corresponds to a
radial position where Ac(ro) = Am(ro). ro corresponds to a Reynolds number of about 3, 600. As explained
before, if we take as a unit for amplitude the number of spots, this Reynolds number corresponds to an
amplitude able to generate 3 spots as given by the location of the maximum of the probability distribution
in Fig. 7. The limits of the tails of the probability distributions are also other notable points that can be
easily extracted from the experimental data. They correspond, respectively, to Reynolds numbers where
the left tail of Prob(A) touches the stability curve around 4, 100 on its right side and around 2, 500 on its
left side (see the diagram of Fig. 13). It appears that these limits are found to be reached for 1 spot and
18 spots in Fig. 7 where they represent the minimum and the maximum of the distribution. Therefore,
three points of the stability curve are exactly determined under the assumption that Prob(A) is the Poisson
distribution as measured for the temporal fluctuation of the total number of spots. In order to get a suffi-
cient number of points of the stability curve, this procedure can be continued for other probability values.
One half and one quarter of the maximum of the probability distributions are thus chosen to complete
the stability curve of torsional flow which is presented in Fig. 16a. A best fit by a power law leads to
a critical Reynolds number Rec = 2140 and a power α = −3/2. As explained in the Introduction, this
power-law exponent is in agreement with the values already observed or predicted in various types of shear
flows.

5 Conclusion

We have performed a statistical analysis of the appearance of localized structures called “spots” in the
transition to turbulence of torsional Couette flow. Visualizations using Kalliroscope particles show that
these spots have a horse-shoe vortical structure and are generated in the area close to the gap between the
rotating disk and the cylindrical vertical wall of the container. The narrower this radial gap, the higher is
the Reynolds number for spot appearance. We have then shown that the fluctuations of the total number
of spots obey a Poisson statistical distribution in accordance with the expected statistical independence of
each spot. A statistical model for the generation of spots and their propagation predicts an error function
shape for the probability distribution of the spots as a function of the radial position. This result is exact in
the case where the statistics of the amplitude generating spots is Gaussian. This general sigmoid shape of
spot distribution is then confirmed by an image analysis of the flow but some deviations from the predicted
exact error function shape are observed. Then, with the help of some very plausible assumptions (the
number of generated spots is directly proportional to the amplitude of the perturbations) and by using the
Poisson distribution previously measured for the number of spots, we extract from the measurements, the
stability curve of torsional Couette flow. A best fit of the experimental data leads to a power-law behavior:
Ac = (Re–Rec)

−3/2, with a critical Reynolds number Rec = 2140. These values are compatible with values
generally observed in subcritical transition to turbulence of shear flows.
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